From 1 - 10 / 17
  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.

  • Categories  

    Modeled 3D biogeochemical sediment fluxes in the western Baltic Sea from 1990 to 2000 using MOM ERGOM SED. A new 3d sediment model ERGOM SED has been developed in the project SECOS for the western Baltic Sea. The model is documented in Radtke et al. (2019, doi: 10.5194/gmd-12-275-2019). It is an extension of the marine biogeochemical model ERGOM and is coupled to the physical model MOM. Simulation results of an eleven-year period from 1990 to 2000 covering the western Baltic Sea are provided for download. The model grid had a spatial resolution of 3 n.m. and covered the whole Baltic Sea (boundary conditions to North Sea in the Skagerrak). Detailed sediment data were compiled and a detailed validation was performed in the SECOS project for the western Baltic Sea. Hence, only model results of that region are provided. The sediment model was spun up for 240 years on a lower resolution and then run for forty years - whereas full model output was saved only for the last eleven years.